Math 564: Advance Analysis 1
Lecture 5

Since the cylinder generate the Bocel o-algebra of $2^{\mathbb{N}}$ all the boxes generate the Bore roalg. of \mathbb{R}^{d}, we get the so called Becnoalli(p) measure $\mu_{p}, p \in(0,1)$, and the lebesgue measure on \mathbb{R}^{d}, defined on all Bone sets.

Def. For a topol-space X, the Boned σ-algebra $B(x)$ is that generated by open stats. The sets in $B(X)$ ar called Boned sets. A Boned measure on X is any measure defined on $O S(X)$.

In particular, the Becwolli(p) a lebesgue we Beret measures.
An example of nor-nnijue extension of premeasure. Let A be the algebra generated b_{b} the half-intervals $[a, b) \subseteq \mathbb{R}$, i.e. A consists of finite uaciona of half f-intervals of the form $[a, b)$, where vet treat $(-\infty, a)$ as a half interval. Define a preccasure μ on A by sting

$$
\mu(A):= \begin{cases}\infty & \text { if } A \neq \varnothing \\ 0 & 0, w\end{cases}
$$

Then $\angle A\rangle_{0}=B(\mathbb{R})$ al μ^{*} (am nonengts net) $=\infty$. Her ave two other extensions to $B(\mathbb{R})$: for each $B \in B(\mathbb{R})$, pat

$$
\begin{aligned}
& \mu_{1}(B)= \begin{cases}0 & \text { it } B \text { is }\left.c_{3}\right|_{1} \\
\infty & 0, w .\end{cases} \\
& \mu_{2}(B)==\text { the conating measure }= \begin{cases}\infty & \text { if } B \text { is inticite } \\
|B| & 0, \omega_{1}\end{cases}
\end{aligned}
$$

Mensurable sots. Let (X, B) be a measunable spece, i.e. B a σ-aly pa X. Let μ be a neasue on B. We call (X, B, μ) a meassnre space. A set $z \subseteq X$ is called μ-null if $\exists \hat{z} \in B$ s.t. $z \subseteq \widehat{z}$ anl $\mu(\hat{z})=0$. Q Z let N ally denote the collection of μ-wall tets.

Obs. Nally is a σ-ideal, i.e. it contains \varnothing al is dosed uncler subsebs and ctbl unious.

Linnd. $\forall B \in B$ and $z \in N_{\text {Null }}$,
(a) $B \cup Z=\tilde{B} \backslash \tilde{Z}$, for sone $\tilde{B} \in \mathbb{B}$ al $\tilde{Z} \mu^{\prime}$-a $l l$.
(b) $B \backslash Z=\widetilde{B} \cup \tilde{Z}$ for sone $\tilde{B} \in B$ and $\tilde{Z}{ }^{\prime}$-nall.

P(oof. (a) let $\hat{z} \in B$ wht $\hat{z} \geq z$ al is μ-aull. Then sef B and $\tilde{\beta}:=\vec{z}: \bar{z} \backslash z$.
(b) ${ }^{B}$ \square z ..

Let Measy $:=\{B \cup Z: B \in B, Z \in \operatorname{Null} \mu\}$, call the seth in Shir $\mu_{\text {-measurable. }}$.
Prop. Measge is the σ-algebra genecated ky BUNalle.
Preoot. It's inough to show int $\mu_{\text {easj }}$ is a σ-algebre.

- Complenents: Let $B \cup Z \in M e a s \mu$, then $(B \cup Z)^{c}=B^{c} \cap Z^{c}=B^{c} \backslash Z$
E Mecsu by the lenerce chove.
- (tbl unions: Let $B_{n} V Z_{n} \in$ Measjr , then $\bigcup_{n \in \mathbb{N}}\left(B_{n} \cup Z_{n}\right)=\left(\bigcup_{n \in \mathbb{N}} B_{n}\right) \cup$

$$
\left(\bigcup_{n} Z_{n}\right)^{\prime}=B \cup Z \in M_{\text {eas }} .
$$

Prop. The nacesure μ achwits a unisue extecsion fo Meassu, called the coupetion of μ, lenoted $\bar{\mu}$.
Pcroot, Define $\bar{\mu}$ on Meas ${ }_{\mu}$ by setting $\bar{\mu}(B \cup Z):=\mu(B)$ foc $B \in B, Z \in N_{n} \| \rho$.

We show the $\bar{\mu}$ is well-detined: let $M=B_{0} \cup Z_{0}=B_{1} \vee Z_{1}$, where $B_{1}, B_{1} \in B$ at Z_{0}, Z, \in Nallg. Need to show $\mu\left(B_{0}\right)=\mu\left(B_{1}\right)$.
Let $B:=B_{0} \cap B_{1}$ al let $\hat{z} \geq Z_{0} \cup Z_{1}$ be a μ-null Bone set. Thea

$$
\mu(B) \leqslant \mu\left(B_{i}\right) \leqslant \mu(B \cup \hat{z})=\mu(B)
$$

hear $B_{i} \subseteq B \cup \hat{Z}=B \cup Z_{0} \cup Z_{1}$ bean $B_{0} \backslash B_{1} \subseteq Z_{1}$ d $B_{1} \backslash B_{0} \subseteq Z_{0}$.
Thus, $\mu\left(B_{i}\right)=\mu(B)=\mu\left(B_{1-i}\right)$.
Fees unignevers, let D be any extcusion to Meas. Then

$$
J^{\prime}(B)=\nu(B) \leqslant \nu(B \cup Z) \leqslant \mu(B \cup \tilde{Z})=\mu(B) \text {, so } \nu(B \cup Z)=\mu(B),
$$

when $B, \hat{Z} \in \beta, z, \hat{Z}$ are mill al $\hat{z} \geqslant z$.
We will drop bus frow the notation $\bar{\mu}$ al just write μ tor the coupletion as well.

Remark. Note the an Polish space has a ctbl open basis, like e rational open boxes in \mathbb{R}^{N}, mich implies tit there are only continuum many open sets, hence also only continuum many Boned sets. However, be se P(any wall set) \subseteq Meas al soul neasares, like lebesga and Bechonlli(p), have coctiannm-sized wall sets, we get the $\left|N_{c} \|_{\mu}\right|$ can be $2^{\text {wontianam. So typically there are many-mang }}$ wore μ-measurable sits Van Bore sets.

An example of a now-measreable sit. Well castanet a non-lebesgue measurable subset of \mathbb{R}. Let $\mathbb{E}_{\mathbb{a}}$ be the coset equivalence clation of $\mathbb{R} \leq \mathbb{R}$, i.e. $x \mathbb{E}_{Q} y: \Leftrightarrow x-y \in \mathbb{Q}$. Each \mathbb{E}_{a}-clan is ctbl (it's a copy of (Q), so there are conticunu-many doses. Using Axiom of Choice, $T \cdots \mathbb{E}^{\mathbb{R}}$ we get a transversal T for $\mathbb{E}_{\mathbb{Q}}$, i.l. a set that ls E_{a}-class
ichersects every $E_{\text {eax }}$-chass in exaitly one point.
Clain. $T_{1}:=T \cap[0,1]$ is not Lebesgee measarable.
"You shall never pick a point trow each don"-D. Caborian.
Ploof. Suppose T_{1} is lebesque measurable.
Note tut for $q_{0} \neq q_{1}$ rationals, $q_{0}+T$ ad $q_{1}+T$ ane difjoint, so

$$
[0,1] \leq \underset{\substack{q \in a \\ \sim[-1,1]}}{ }\left(q+T_{1}\right) \leq[-1,2]_{0} .
$$

Beanse Lebesgee weasure is traurlation isvariant, $\lambda\left(q+T_{1}\right)=\lambda\left(T_{1}\right)$ $\forall q \in \mathbb{Q}$. Thus,

$$
1=\lambda([0,1)) \leq \sum_{q \in \mathbb{Q}_{\cap}[-1,1]} \lambda\left(q+T_{1}\right)=\sum_{q \in \mathbb{Q} \cap[-1,1]} \lambda\left(T_{1}\right) \leqslant \lambda([-1,2])=3 .
$$

If $\lambda\left(T_{1}\right)=0$, then $1 \leq 0$, and if $\lambda\left(T_{1}\right)>0$, then $\infty \leq 3$, a contrachiction.
Reanct. (a) The Lebesgane massine λ on \mathbb{R}^{d} is tracslation civacriact,
i.e. $\forall x \in \mathbb{R}^{d}$ al $A \subseteq \mathbb{R}^{d} \lambda$-ueasiciable,

$$
\lambda(A)=\lambda(x+A)
$$

This is bere it's true for boxes hs definition.
(b) The Rernoulli(p) measure $\mu_{p}, ~ D \in(0,1)$, on $2^{(N)}$ is shift-indaciant, sher the shiff is the trangforuction $s: 2^{\mathbb{N}} \rightarrow 2^{N}$
Being chift irvariant means:
$\left(x_{u}\right)_{n \in N} H\left(x_{n+1}\right)_{n \in \mathbb{N}}$.
$S^{-1}(A)$ has the sace recsun as A, for any weas. $A \subseteq 2^{N}$.
This wones tron the condition tht $\operatorname{Prob}[x \in A]=\operatorname{Prob}[s(x) \in \mathbb{A}]=$
$\operatorname{Prob}\left[x \in S^{-1}(A)\right]$. Shitt-invariance is true because it's true for cylinders:

$$
\begin{aligned}
& S^{-1}[w]=[0 w] \cup[1 w] \text {, so } \mu_{p}\left(S^{-1}[w]\right)=\mu_{p}([0 w])+\mu_{p}[(w]= \\
& (1-p) \cdot \mu_{p}([w])+p \cdot \mu_{p}([w])=\mu_{p}([w]) .
\end{aligned}
$$

