Math 564: Advance Analysis 1 Lecture 5

Since the cylinders generate the Borel J-algebra of 2^N al the boxes generate the Borel J-alg. of IR^d, we get the so called Bernoulli(p) measure Jp, pE(0,1), and the lebesgue measure on IR^d, defined on all Bonel sets.

<u>Def.</u> For a topol-space X, the Gonet or-algebra B(X) is that generated by open sets. The sets in B(X) are called Bonel sets. A Bonel measure in X is any neasure defined on B(X).

In perticular, the Berwalli(p) I hebesgue the Baret manares.

An example of non-unique extension of premasure. Let A be the algebra generated by the half-intervals [a, b) & IR, i.e. A consists of finite unions of half-intervals of the form [a,b), where we treat (-∞, a) as a half interval. Define a preveasure i on to by atting $f(A) := \begin{cases} \infty & \text{if } A \neq \emptyset \\ 0 & \text{o.w.} \end{cases}$ Then $(A)_{C} = \bigotimes (IR) \longrightarrow \int \mathcal{M}^{*}(any nonempty net) = \infty$. Here are two other extensions to $\bigotimes (IR)$: for each $B \in \bigotimes (IR)$, put $\mathcal{M}_{1}(B) \coloneqq \{0 \text{ if } B \text{ is cf}\},\$ J2 (B) = the counting measure = { 10 if Bis intrite

An example of a non-measure ble sit. We'll writhered a non-lebessele measurable subset of IR. Let EQ be the coset equivalence relation of IRSIR, i.e. x EQ y :<=> x-g C R. Each EQ - dom is cfbl (it's a copy of R), so there are continue - many classes. Using Axion of Choice, T I R ve get a transversal T for EQ, i.e. a set that SEq-class

ichdersachs every
$$\mathbb{E}_{02}$$
-chass in exactly one point.
Claim $T_1 := T \cap [0,1]$ is not Labesgue measurable.
"You shall over pile a point trow and class"-D. Carborian.
Ploof Suppose T_1 is labesgue measurable.
Note that for $W_1 = W_1$ reduces, $q \in T_1$ and $q_1 + T_1$ are disjoint, so
 $[0,1] \leq \bigsqcup_{q \in Q} (q + T_1) \leq T_{-1}, 2]$.
 $\cap_{T_1, G}$
Beense Labessee measure is translation invariant, $\lambda(q+T_1) = \lambda(T_1)$
 $\forall q \in Q_1$. Thus,
 $I = \lambda(T_0, I) \leq \sum \lambda(q+T_1) = \sum \lambda(T_1) \leq \lambda(T_1) \leq \lambda(T_1, T_3) = 3$.
 $q \in Q_{0,1T_1, Y}$
 $f \in Q_{0,1T_1, Y}$ free $M_1 = M_1 = M_1 = M_1$
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq \lambda(T_1, T_3) = 3$.
 $q \in Q_{0,1T_1, Y}$ free $M_1 = M_1 = M_1$
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq \lambda(T_1, T_3) = 3$.
 $q \in Q_{0,1T_1, Y}$ free $M_1 = M_1$ is translation invariant,
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation invariant,
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is translation.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is invariant,
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_2$ is a constractive form.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is a constraint.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_2$ is a constraint invariant,
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_2$ is a constraint inversion inversion invariant.
 $I = \lambda(T_0, I) \leq \sum \lambda(q + T_1) = \sum \lambda(T_1) \leq M_1$ is a constraint inversion inversio